
1

A FRAMEWORK FOR PERFORMING V&V WITHIN REUSE-BASED
SOFTWARE ENGINEERING

Edward A. Addy
eaddy@wvu.edu

NASA/WVU Software Research Laboratory

ABSTRACT

Verification and validation (V&V) is
performed during application development
for many systems, especially safety-critical
and mission-critical systems. The V&V
process is intended to discover errors,
especially errors related to critical
processing, as early as possible during the
development process. Early discovery is
important in order to minimize the cost and
other impacts of correcting these errors.

In order to provide early detection of errors,
V&V is conducted in parallel with system
development, often beginning with the
concept phase. In reuse-based software
engineering, however, decisions on the
requirements, design and even
implementation of domain assets can be
made prior to beginning development of a
specific system. In this case, V&V must be
performed during domain engineering in
order to have an impact on system
development.

This paper describes a framework for
performing V&V within architecture-centric,
reuse-based software engineering. This
framework includes the activities of
traditional application-level V&V, and
extends these activities into domain
engineering and into the transition between
domain engineering and application
engineering. The framework includes

descriptions of the types of activities to be
performed during each of the life-cycle
phases, and provides motivation for the
activities.

INTRODUCTION

Verification and Validation (V&V) methods
are used to increase the level of assurance of
critical software, particularly that of safety-
critical and mission-critical software.
Software V&V is a systems engineering
discipline that evaluates the software in a
systems context. The V&V methodology
has been used in concert with various
software development paradigms, but
always in the context of developing a
specific application system. However, the
reuse-based software development process
separates domain engineering from
application engineering in order to develop
generic reusable software components that
are appropriate for use in multiple
applications.

The earlier a problem is discovered in the
development process, the less costly it is to
correct the problem. To take advantage of
this, V&V begins verification within system
application development at the concept or
high-level requirements phase. However, a
reuse-based software development process
has tasks that are performed earlier, and
possibly much earlier, than high-level

2

requirements for a particular application
system.
In order to bring the effectiveness of V&V
to bear within a reuse-based software
development process, V&V must be
incorporated within the domain engineering
process. Failure to incorporate V&V within
domain engineering will result in higher
development and maintenance costs due to
losing the opportunity to discover problems
in early stages of development and having to
correct problems in multiple systems already
in operation. Also, the same V&V activities
will have to be performed for each
application system having mission or safety-
critical functions.

On the other hand, it is not possible for all
V&V activities to be transferred into domain
engineering, since verification extends to the
installation and operation phases of
development and validation is primarily
performed using a developed system. This
leads to the question of which existing
(and/or new) V&V activities would be more
effectively performed in domain engineering
rather than in (or in addition to) application
engineering.

This paper describes a framework for
performing V&V within reuse-based
software. The framework identifies V&V
tasks that could be performed in domain
engineering, V&V tasks that could be
performed in the transition from domain
engineering to application engineering, and
the impact of these tasks on application
V&V activities. The criteria and motivation
for performing V&V in domain engineering
are also considered.

VERIFICATION AND VALIDATION
IN TRADITIONAL SYSTEM
APPLICATION ENGINEERING

V&V has been performed during application
system development, within the context of
many different development methodologies,
including waterfall, spiral, and evolutionary
development. V&V is a set of activities
performed in parallel with system
development and designed to provide
assurance that a software system meets the
operational needs of the user. It ensures that
the requirements for the system are correct,
complete, and consistent, and that the life-
cycle products correctly implement system
requirements. The V&V process evaluates
software in a systems context, using a
structured approach to analyze and test the
software against system functions and
against hardware, user and other software
interfaces.

The term verification refers to the process of
determining whether or not the products of a
given phase of the software development
cycle fulfill the requirements established
during the previous phase, while validation
is the process of evaluating software at the
end of the software development process to
ensure compliance with software
requirements [1]. Verification is intended to
ensure that the product is built correctly,
while validation assures that the correct
product is built.

While verification and validation have
separate definitions, in practice the activities
are merged into the process of V&V. This
process evaluates software in a systems
context, using a structured approach to
analyze and test the software against system
functions and against hardware, user and
other software interfaces [2]. V&V is also
described as a series of technical and

3

management activities performed to improve
the quality and reliability of that system and
to assure that the delivered product satisfies
the user’s operational needs [3].

V&V activities are designed to be
independent of but complementary to the
activities of the development and test teams.
Where the development team is usually
focused on nominal performance and the
testing is usually based on requirements and
operational profiles, V&V includes analysis
and tests on critical and off-nominal
behavior throughout all phases of the
development lifecycle. V&V activities also
complement the activities of the
configuration management and quality
assurance groups rather than being a
duplicate or replacement of these activities
[4].

A set of minimal and optional V&V
activities is defined in the IEEE Standard for
Software Verification and Validation Plans
[5]. These activities are divided into the
life-cycle phases listed below. The V&V
tasks within each life-cycle phase are shown
in Figure 1.

• Management of V&V
• Concept Phase V&V
• Requirements Phase V&V
• Design Phase V&V
• Implementation Phase V&V
• Test Phase V&V
• Installation and Checkout Phase

V&V
• Operations and Maintenance

Phase V&V

V&V is performed as a part of a risk
mitigation strategy for application systems
having high risk. The risks can be in areas
such as safety, security, mission, financial,

or reputation. The scope and level of V&V
can vary with each project, based on the
criticality of the system and on the role of
software in accomplishing critical functions
of the system[6]. V&V determines the
software involved in high-risk areas, and
V&V activities are focused on this critical
software.

JUSTIFICATION FOR PERFORMING
V&V WITHIN DOMAIN
ENGINEERING

Studies have shown that the cost and
difficulty of correcting an error increases
dramatically as the error is discovered in
later life-cycle phases[6]. V&V addresses
that issue in traditional system development
through activities that begin in the concept
or high-level requirements phase and
continue throughout all life-cycle phases.
The V&V activities are focused on high-risk
areas, so that errors in the high-risk areas
can be discovered in time to evolve a
complete and cost effective solution rather
than forcing a makeshift solution due to
schedule constraints.

Within reuse-based software engineering,
software engineering activities may be
performed prior to the concept phase of a
particular application system. In order to
extend the benefit of early error detection to
reuse-based software engineering, V&V
must be incorporated within the domain
engineering process. Performing V&V at
the domain level may also reduce the level
of effort required to perform V&V in the
individual application systems.

Although software is the target of V&V
activities, V&V recognizes that software
does not execute in isolation, but is an
integral part of a system[7]. In order to

4

provide assurance that critical functions will
be performed correctly, software must be
evaluated within the context in which the
software will execute. In reuse-based
software engineering, the context for V&V
must be provided by the domain model and
domain architecture.

5

Figure 1: V&V Tasks for Life-Cycle Phases in Application Engineering

PHASE TASKS
Management Software Verification and Validation Plan Generation

Baseline Change Assessment
Management Review
Review Support

Concept Concept Documentation Review
Requirements Software Requirements Traceability Analysis

Software Requirements Evaluation
Software Requirements Interface Analysis
System Test Plan Generation
Acceptance Test Plan Generation

Design Design Traceability Analysis
Design Evaluation
Design Interface Analysis
Component Test Plan Generation
Integration Test Plan Generation
Test Design Generation

• component testing
• integration testing
• system testing
• acceptance testing

Implementation Source Code Traceability Analysis
Source Code Evaluation
Source Code Interface Analysis
Source Code Documentation Evaluation
Test Case Generation

• component testing
• integration testing
• system testing
• acceptance testing

Test Procedure Generation
• component testing
• integration testing
• system testing

Component Test Execution
Test Test Procedure Generation

• acceptance testing
Integration Test Execution
System Test Execution
Acceptance Test Execution

Installation and
Checkout

Installation Configuration Audit
V&V Final Report Generation

Operations and
Maintenance

Software V&V Plan Revision
Anomaly Evaluation
Proposed Change Assessment
Phase Task Iteration

6

FRAMEWORK FOR PERFORMING
V&V WITHIN REUSE-BASED
SOFTWARE ENGINEERING

One model for reuse-based software
engineering is the Two Life-Cycle Model
shown in Figure 2, developed by the U.S.
Department of Defense Software for
Adaptable, Reliable Systems (STARS)
program. This model assumes a domain-
specific, architecture-centered approach to
software reuse. The domain model
describes the problem space of the domain,
and expresses requirements. The domain
architecture describes the solution space of
the domain, while the domain components
are intended to be used within application
systems to meet the functions described in
the domain architecture.

Addy developed a draft framework for
performing V&V within reuse-based
software engineering engineering by adding
V&V activities to the STARS Two Life-
Cycle Model. The application-level IV&V
tasks described in IEEE STD 1012 served as
a starting point. Similar tasks that seemed
appropriate were added to link life-cycle
phases in the domain level, and transition
tasks were added to link application phases
with domain phases. This draft framework
was refined by a working group at Reuse ‘96
[8], and the resultant framework is shown in
Figure 3. The specific tasks of each phase at
the domain and transition levels are listed in
Figure 4.

Domain-level V&V tasks are performed to
ensure that domain products fulfill the
requirements established during earlier
phases of domain engineering. Transition-
level tasks provide assurance that an
application artifact correctly implements the
corresponding domain artifact. Traditional
application-level V&V tasks ensure the

application products fulfill the requirements
established during previous application life-
cycle phases.

Performing V&V tasks at the domain and
transition levels will not automatically
eliminate any V&V tasks at the application
level. However, it might be possible to
reduce the level of effort for some
application-level tasks. The reduction in
effort could occur in a case where the
application artifact is used in an unmodifed
form from the domain component, or where
the application artifact is an instantiation of
the domain component through parameter
resolution or through generation.

Domain maintenance and evolution are
handled in a manner similar to that described
in the operations and maintenance phase of
application-level V&V. Changes proposed
to domain artifacts are assessed by V&V to
determine the impact of the proposed
correction or enhancement. If the
assessment determines that the change will
impact a critical area or function within the
domain, appropriate V&V activities are
repeated to assure the correct
implementation of the change.

Domain-Level Tasks

The domain-level tasks are analogous to the
application-level tasks, in that the products
of each phase are evaluated against the
requirements specified in the previous stage
and against the original user requirements.
The domain-level tasks can be divided into
the three phases of domain analysis, domain
design, and domain implementation, which
correspond to the application phases of
requirements, design, and implementation.

During domain analysis V&V, the V&V
team should ensure that the domain model is

7

an appropriate representation of the user requirements. (The singular term "model" is

Domain
Analysis

Domain
Design

Domain
Implementation

Requirements
Analysis

System
Design

System
Implementation

Domain Engineering

Application Engineering

Existing
System

Artifacts

New System
Requirements

Domain
Model

Domain
Architecture

Domain
Components

New
System

Domain Management

Figure 2: STARS Two Life-Cycle Model

System
Specification

Domain
Analysis

Domain
Design

Domain
Implementation

Requirements
Analysis

System
Design

System
Implementation

Domain Engineering

Application Engineering

New and
Existing System

Artifacts and
Requirements

(Domain
Concepts)

System
Requirements
(Common and

Unique)

Domain
Model

Domain
Architecture

Domain
Components

New
System

Domain Management

System
Architecture

Program Management

Verification

Development

Validation

Correspondence

Figure 3: Framework for V&V within Reuse-Based Software Engineering

8

Figure 4: V&V Tasks for Life-Cycle Phases at the Domain and Transition Levels

not intended to imply that only one model
will be constructed; this term is used to
mean the one or more models that express
the domain requirements.) Note that
ensuring that user requirements are satisfied
implies that the requirements in the domain
must be explicitly stated. Criticality analysis
is performed to ensure that high risk
requirements are appropriately addressed,
either mission-critical requirements or those
related to properties such as safety and
security. The criticality analysis should also
determine critical functions that will be
performed by software. The domain model

is evaluated to ensure that the requirements
are consistent, complete, and realistic,
especially in the high risk areas. The model
is evaluated to determine responses to error
and fault conditions and to boundary and
out-of-bounds conditions. As the domain
engineering progresses into later phases, the
requirements are traced forward. This will
allow evaluation of the impact of changes to
the domain artifacts.

Domain design V&V tasks focus on
ensuring that the domain architecture
satisfies the requirements expressed in the

LEVEL PHASE TASKS
Domain
Engineering

Domain
Analysis

Validate Domain Model
Model Evaluation
Requirements Traceability Analysis (especially
forward traceability for completeness)

Domain Design Verify Domain Architecture
Design Traceability Analysis
Design Evaluation
Design Interface Analysis
Component Test Plan Generation
Component Test Design Generation

Domain
Implementation

Verify and Validate Domain Components
Component Traceability Analysis
Component Evaluation
Component Interface Analysis
Component Documentation Evaluation
Component Test Case Generation
Component Test Procedure Generation
Component Test Execution

Transition Requirements Correspondence Analysis between System
Specification and Domain Model

Design Correspondence Analysis between System
Architecture and Domain Architecture

Implementation Correspondence Analysis between System
Implementation and Domain Components

9

domain model. Each requirement in the
domain model should trace to one or more
items in the domain architecture (forward
traceability), and each item in the domain
architecture should trace back to one or
more requirements in the domain model
(reverse traceability). The domain
architecture is evaluated to ensure that it is
consistent, complete, and realistic.
Interfaces between components are
evaluated to ensure that the architecture
supports the necessary communication
between components in the architecture,
users, and external systems. Planning and
design of component testing are performed
during this phase. The component testing
should include error and fault scenarios,
functional testing of critical activities, and
response to boundary and out-of-bounds
conditions.

Domain Implementation V&V tasks ensure
that the domain components satisfy the
requirements of the domain architecture and
will satisfy the original user requirements.
The components should have a forward and
reverse tracing with the domain architecture.
Components that are involved with
performing critical actions should receive
careful consideration. The interface
implementation, both within components of
the architecture and with systems outside the
architecture, is evaluated to ensure that it
meets the requirements of the domain
architecture. Component test cases and test
procedures are generated, and component
testing is performed.

Integration test activities are explicitly
omitted from the domain-level tasking, since
integration testing is oriented toward
application-specific testing. Some form of
integration testing might be appropriate
within domain-level V&V in the case where
the architecture calls for specific domain

components to be integrated in multiple
systems. This limited form of integration
testing could be done along with the
component testing activities.

Correspondence Tasks

Correspondence analysis is a term not found
in IEEE STD 1012. The term is used within
this paper to describe the activities that are
performed to provide assurance that an
application artifact corresponds to a domain
artifact; i.e., the application artifact is a
correct implementation of the domain
artifact. Four activities are to be performed
during correspondence analysis:

• Map the application artifact to the
corresponding domain artifact.

• Ensure that the application artifact has
not been modified from the domain
artifact without proper documentation.

• Ensure that the application artifact is a
correct instantiation of the domain
artifact.

• Obtain information on testing and
analysis on a domain artifact to aid in
V&V planning for the application
artifact.

Correspondence analysis is performed
between the corresponding phases of the
domain engineering and application
engineering life-cycles. The system
specification for any system within the
domain should correspond to the domain
model. The system specification could
involve instantiating, parameterizing, or
simply satisifying the requirements
expressed in the domain model. Any
system-unique requirements should be
explicit, and the rationale for not addressing
these system-unique requirements within the
domain model should be stated.

10

The system architecture is analyzed to
ensure that it satisfies the requirements
specified in the domain architecture. Any
variations should be documented along with
the reason for the variation. The rationale
for parameters chosen or options selected in
constructing the system architecture from
the domain architecture should be recorded.

The system components are analyzed to
ensure correspondence to domain
components. Again, variations, parameters,
and options should be recorded along with
their rationale. Baseline testing might be
appropriate in order to compare variants of a
domain component.

COMMUNICATING RESULTS

Communicating V&V work products and
results is vital in to avoiding the repetition of
V&V tasks and to ensuring that potential
reusers can properly assess the status of
reusable components. V&V work products
and results should be associated with the
component and made available to domain
and application engineers. In some cases,
V&V efforts might be directed at a grouping
of components rather than at an individual
component, and this information should also
be available. Groupings might include
components that are expected to occur
together in several applications, or might
include variants of one domain artifact.

The information on similar components
within the domain should be consistent in
content and format, in order to allow the
information to be easily used by both
domain engineers and application engineers.
The information that should be
communicated include the following:

• V&V Planning Decisions and
Rationale

• V&V Analysis Activities
• V&V Test Cases and Procedures
• V&V Results and Findings

FUTURE WORK

Much work needs to be done to continue
development of the framework for
performing V&V within reuse-based
software engineering. This work includes
determining criteria for identifying domains
where V&V is appropriate; specifying
prerequisites, inputs and outputs for the
domain-level and transition-level V&V
tasks; and developing methods and tools to
perform the domain engineering V&V tasks.
Refinement of the framework will occur
when experiments are conducted in applying
V&V within critical domains.

CONCLUSION

The concept of V&V seems to be
appropriate for reuse-based software
engineering. Just as with V&V in
application development, V&V should be
performed as part of a risk mitigation
strategy. The principle conclusions on
performing V&V within reuse-based
software engineering are listed below.

1. There are motivating reasons to perform
V&V during domain engineering.

V&V activities might be appropriately
performed during domain engineering. The
primary motivation for V&V within domain
engineering is to find and correct errors in
the domain artifact in order to prevent the
errors from being propagated to the
application systems. This motivation is
especially strong where the application
systems perform critical functions. Even if

11

there are no critical functions performed by
the systems within the domain, V&V might
be appropriate for a component that has the
potential to be used in a large number of
application systems. The motivation
contained within the original premise
considered by the working group was that of
reducing redundant V&V activities within
multiple critical applications. This
motivation seemed to have some merit, but
appeared to be weaker than the other two
reasons because of conditions described in
the second finding. The reasons for
performing V&V during domain engineering
are listed below:

• To reduce operational risk by
providing assurance that domain
artifacts are correct and consistent
with user needs

• To reduce the risk of a fault in a
component used in many systems

• To reduce redundant V&V efforts in
separate applications

2. V&V within Domain Engineering is
appropriate for some domains.

V&V tasks during domain engineering will
be of benefit when performed in a well-
defined domain that contains multiple
systems with high risk. The context in
which the components will be used should
be well understood, to provide a proper
framework for analysis and testing of the
component. The ability to perform V&V
will increase as the application artifacts
more closely match the domain components
(e.g., unmodified reuse, application artifacts
created through parameterization). The
V&V effort should be tailored to address the
critical areas within the domain, with the
level of effort being greatest in the areas of
highest criticality.

3. V&V is not appropriate in reuse outside
of architecture-centered domain
engineering.

Without the context of the domain, it is
impossible to perform V&V activities on a
component. This is consistent with the
concept that V&V should consider software
in relation to the system in which the
software is executing. It is not possible to
determine criticality or to consider the
impact of fault or error conditions in
isolation of context, and it is the domain
architecture that provides the context for the
systems in the domain.

Since general purpose reuse libraries do not
typically retain the context for which the
component can be reused, V&V would not
generally be an appropriate activity for these
libraries. This should not be understood as
an argument against ensuring that domain
artifacts are of a high quality and perform as
described. V&V is performed within
application development as a complement
and not a replacement of QA and testing.
QA and testing are always appropriate reuse
activities, even when V&V is not possible.

REFERENCES

1. IEEE STD 729, IEEE Standard Glossary
of Software Engineering, IEEE Computer
Society, 1983.

2. Wallace, Dolores R. and Fujii, Roger U.,
Software Verification and Validation: Its
Role in Computer Assurance and Its
Relationship with Software Project
Management Standards, NIST Special
Publication 500-165, National Institute of
Standards and Technology, 1989.

12

3. Lewis, Robert O., Independent
Verification and Validation, A Life Cycle
Engineering Process for Quality Software,
John Wiley & Sons, 1992.

4. Wallace, Dolores R. and Fujii, Roger U.,
“Software Verification and Validation: An
Overview”, IEEE Software, May 1989.

5. IEEE STD 1012, IEEE Standard for
Software Verification and Validation Plans,
IEEE Computer Society, 1986.

6. Makowsky, Lawrence C., A Guide to
Independent Verification and Validation of
Computer Software, Defense Technical
Information Center, USA-BRDEC-
TR//2516, June 1992

7. Duke, Eugene, L., “V&V of Flight and
Mission-Critical Software”, IEEE Software,
May 1989.

8. Addy, Edward A., “V&V Within Reuse-
Based Software Engineering”, Proceedings
for the Fifth Annual Workshop on Software
Reuse Education and Training, Reuse ‘96,
http://www.asset.com/WSRD/conferences/
proceedings/results/addy/addy.html.

